Polynomial Division and Factor Theorem Definition: A polynomial is a sum/difference of terms with non-negative integer powers of x. The highest power of x is its degree. The following are polynomials o $x^3 + 4x^2 - 3x + 1$ (degree 3) o $5x^6 - 2x^2$ (degree 6) o 10 (degree 0) The following are not polynomials $\frac{1}{x} + x^3$ (the $\frac{1}{x}$ term can be written as x^{-1} which is a **negative** power) $x^2 + 3x + \sqrt{x}$ (the \sqrt{x} term can be written as $x^{\frac{1}{2}}$ which has a **non-integer** power) Simplifying Fractions - one single fraction (GCSE recap) $8x^4 - 4x^3 + 6x$ (x+4)(3x-1) $x^2 + 3x + 2$ 3x - 1 $x^2 + 5x + 4$ 2xFactorise Split up terms since only 1 term in the Cancel common factors 3x - 1denominator (we couldn't do this if more $(x+4)\frac{(3x-1)}{}$ (x+1)(x+2)than 1 term in the denominator) $\overline{(x+1)(x+4)}$ $= \frac{8x^4}{2x} - \frac{4x^3}{2x} + \frac{6x}{2x}$ Cancel common factors x + 1= x + 4(x+1)(x+2)Cancel $= \frac{1}{(x+1)(x+4)}$ $=4x^3-2x^2+3$ $-\frac{(x+2)}{}$ $\overline{(x+4)}$ 4 Polynomial Division Methods (pick whichever works for you – method 2 is taught in schools) Method 1: Box/Grid Method Method 2: Long Division Divide $2x^3 + x^2 - 13x + 6$ by x Divide $2x^3 + x^2 - 13x + 6$ by x + 3Set up the division using the ? ? ? Orange boxes combined divisor dividend need to give x^2 ? ? Green boxes combi Step 1: need to give -13xCompare the first term of the $x + 3 \overline{)2x^3 + x^2 - 13x + 6}$ Once we figure what goes at the blue box needs to give 6 dividend and the divisor Step 1: Step 2: $2x^3$ Put the first term in the top left Check what you need to multiply by $x + 3 \overline{)2x^3 + x^2 - 13x + 6}$ nd write at the top Step 3: Multiply out and write under $x + 3 \overline{)2x^3 + x^2 - 13x + 6}$ (be sure to **line up** common terms) Decide what needs to go in the Subtract and then bring down the $x + 3 2x^3 + x^2 - 13x + 6$ $2x^3$ next term afte first red? position We want $2x^3$ and have $-5x^2 - 13x$ hence $2x^2$ Repeat the 4 steps again Step 3: Step 5: $2x^2$ Do the multiplication for the Compare the first term in each $\begin{array}{c|c} x+3 & 2x^3+x^2-13x+6 \\ 2x^3+6x^2 & \end{array}$ $2x^3$ bottom left cell $-5x^{2}-13x$ $6x^2$ Step 4: $2x^2$ The orange boxes need to add Check what you need to multiply by and write at the top to $1x^2$ and we already have $6x^2$ $2x^3$ $-5x^2$ $\begin{array}{c|c} x + 3 & 2x^3 + x^2 - 13x + 6 \\ 2x^3 + 6x^2 & \end{array}$ hence $-5x^2$ needs to go in the top middle row $6x^2$ $-5x^2 - 13x$ Decide what needs to go in the **Multiply out and write under** second red? position be sure to line up common terms) $x + 3 2x^3 + x^2 - 13x + 6$ $2x^3 - 5x^2$ $2x^3 + 6x^2$ We want $-5x^2$ and have hence -5x $6x^2$ $-5x^2 - 13x$ $-5x^2 - 15x$ Step 8: Step 6: $2x^2 -5x$ Subtract and then bring down the $x + 3 \overline{)2x^3 + x^2 - 13x + 6}$ bottom middle cell next term after $2x^3$ $-5x^2$ $-5x^2 - 13x$ $6x^2$ -15xStep 7: $2x^2 -5x$ Repeat the 4 steps again he green boxes need to add to Step 9: $2x^3$ $-5x^2$ 2x-13x and we already have Compare the first term in each $\begin{array}{c|c} x+3 & 2x^3+x^2-13x+6 \\ 2x^3+6x^2 & \end{array}$ -15x hence 2x needs to go in the top right row $6x^2 - 15x$ $-5x^2 - 13x$ $-5x^2 - 15x$ Step 10: Step 8: $2x^2 - 5x + 2$ Decide what needs to go in the Check what you need to multiply by $2x^2 -5x +2$ $x + 3 \overline{)2x^3 + x^2 - 13x + 6}$ last red? position and write at the top $2x^3 + 6x^2$ $x = 2x^3 = -5x^2 = 2x$ We want 2x and have x hence 2 $-5x^2 - 13x$ $6x^2 - 15x$ $-5x^2 - 15x$ 2x + 6Step 9: $2x^2 -5x +2$ Step 11: $2x^2 - 5x + 2$ Multiply out and write under $x + 3 2x^3 + x^2 - 13x + 6$ $2x^3$ $-5x^2$ 2xbe sure to **line up** common terms) $2x^3 + 6x^2$ $-5x^2 - 13x$ $+3 | 6x^2 | -15x | 6$ $-5x^2-15x$ oox matches the constant from 2x + 6We get 6 in the box and the quation has a 6 hence match $2x^3 + x^2 - 13x + 6$ Step 12: $x + 3 \overline{\smash{\big)}\ 2x^3 + x^2 - 13x + 6} \\ 2x^3 + 6x^2$ $-5x^2 - 13x$ our final term is the remainder. If this is 0 then we say the polynomial $-5x^2 - 15x$ divides exactly Answer comes from above the top dividing line: $2x^2 - 5x + 2$ Answer comes from the top of the box: $2x^2 - 5x + 2$ How did we know to stop? What if the term in the final cell didn't match the equation? We know we're done when we either get a constant upon subtracting or ui we compare and can't multiply by anything since the power we have is ivide exactly).In general, the remainder is found by comparing the erms in the last column of the box with the original dividend $2x^3$ + $\frac{1}{x^2} - 13x + 6$ and determining the difference. If the terms in the box Summary Of Method: don't perfectly match the original dividend, the difference represents Step 2: Check what you need to multiply by and write at the top Step 3: Multiply out and write under (be sure to line up common terms) Hindsight: Notice how like terms are on the diagonal Repeat these 4 steps until you either get a constant upon subtracting or until you compare and can't multiply by anything since the power you have is smaller. Your final term is the remainder. If this is 0 then we say the polynomial divides exactly • There is a tooth pattern to this (down, diagonally up, down, diagonally up etc) Method 3: Synthetic Division (aka drop the baby and carry it) Divide $2x^3 + x^2 - 13x + 6$ by x + 3Step 1: Put what you're dividing by in a box and the coefficients in a line. Then leave a gap and draw a line Step 2: Drop the first **1** −13 6 number right down Step 3: 1 -13 6 Then -32 1 -13 6 move to add next Move/carry to next column vertically column 2 -5Step 4: Consider the next <u>-3</u> 2 1 −13 6 column and do the same move to next add column Move/carry to next column Step 5: Consider the next add move to $\frac{15}{6}$ vertically Move/carry to next column next These numbers are the coefficients of our answer. The right most one is the constant, then x term then the x^2 term Answer: $2x^2 - 5x + 2$

www.mymathscloud.com

WWW.mymathscloud.com Method 4: Comparing coefficients	Factor Theorem
Divide $2x^3 + x^2 - 13x + 6$ by $x + 3$ $cubic \equiv (linear)(something) + remainder$	Why use the factor theorem? The factor theorem is a quick way or finding a linear factor of a polynomial Definition: The factor theorem states that if $f(x)$ is a polynomial, then
Since $2x^3 + x^2 - 13x + 6$ is a cubic equation, it can be written as the multiplication of a linear and a quadratic polynom $2x^3 + x^2 - 13x + 6 \equiv (x+3)(quadratic) + remainder$ $2x^3 + x^2 - 13x + 6 \equiv (x+3)(ax^2 + bx + c) + R$ $RHS = (x+3)(ax^2 + bx + c) + R$ $= ax^3 + bx^2 + cx + 3ax^2 + 3bx + 3c + R$ $= ax^3 + (b+3a)x^2 + (c+3b)x + 3c + R$ If we know it divided exactly the substitution of a linear and a quadratic polynom of the pol	Steps: Step 1: set what you're dividing by equal to 0 and solve Step 2: plug this value found into the function. The answer is the remainder. If remainder is zero, we have a special name called 'a factor.' Step 3: We only do this step if finding an unknown. Set the function from step 2 equal to the remainder (0 if given a factor or the remainder if given a remainder of the rema
Therefore: $2x^3 + x^2 - 13x + 6 \equiv ax^3 + (b+3a)x^2 + (c+3b)x + 3c + R$	$f(x) = x^3 + 4x^2 + x - 6$ i. Use the factor theorem to show that $(x + 2)$ is a factor of $f(x)$. ii. Hence factorise $f(x)$ completely. iii. Write down all the solutions to the equation $x^3 + 4x^2 + x - 6 = 0$
Comparing the coefficients based on their colours:	i. $f(x) = x^3 + 4x^2 + x - 6$ ii. $x + 2 = 0$ $x = -2$ ii. $x + 2 = 0$ $x = -2$ ii. $x + 2 = 0$ $x = 1$ $x + 2 x^3 + 4x^2 + x - 6$ $x = 1$ $x + 2 x^3 + 4x^2 + x - 6$ $x = 1$ $x + 2 x^3 + 4x^2 + x - 6$ $x = 1$ $x + 2 x^3 + 4x^2 + x - 6$ $x = 1$ $x + 2 x^3 + 4x^2 + x - 6$ $x = 1$ $x + 2 x^3 + 4x^2 + x - 6$ $x = 1$ $x + 2 x + 3 + 4 x^2 + x - 6$ $x = 1$ $x + 2 x + 3 + 4 x + 4$
Box/Grid MethodLong DivisionSynthetic DivisionComparing CoeffVery visual and a good method for weaker studentsThis is just like long division for numbers, but studnets 	aring Example 3: Example 4: Example 5: Example 6:
Examples of dividing polynomials These will all be done method 2 – long division "Compare first with first, multiply out, subtract, bring down next term repeat"	$f(2) = 3$ $f(x) = 3x^3 - 12x^2 + 6x - 24$ $= 4a - 2b - 1$ $\therefore 4a - 2b - 10 = 0$ $2a - b = 5 \text{ (1)}$ $f(4) = 3(4)^3 - 12(4)^2 + 6(4) - 24$ $2x^2 - 5x + 4$ $x + 4 2x^3 + 3x^2 - 16x + 16$ $2x^3 + 3x^2 - 16x + 16$
Type 1: Example 1 Example 2 Example 3: By a quadratic Example 4: By a quadratic Find the remainder when $2x^3 - 5x^2 - 16x + 8$ is divided by $(x - 4)$ Find the remainder when $10x^3 + 43x^2 - 2x - 10$ is divided by $(x - 4)$ Divide $2x^3 - 3x^2 - 11x + 6$ by $2x^2 + 3x - 2$ Divide $3x^4 - 2x^3 - 5x^2 + 2x^2 $	Therefore a factor $a = \frac{1}{4} + \frac{1}{2} + \frac{1}{4} = 0$ $a = \frac{5}{8}$ $a = \frac{5}{4} + \frac{5}{2} + \frac{25}{4}$ $a + \frac{1}{2} + \frac{25}{4} = 0$ $a + 2b = -25 (2)$ $6x - 24$ $6x - 24$ $6x - 24$ $6x - 24$ 0 $3x^{3} - 12x^{2} + 6x - 24$ $= (x - 4)(3x^{2} + 6)$ $x = -4$ $x + 4 = 0$ $x = -4$ $x + 4 = 0$ $x = -4$
Type 2 : Missing terms Fill in missing terms with place holders. For example: divide $4x^3 - 13x - 6$ by $x - 2 \implies$ write as $4x^3 + 0x^2 - 13x - 6$ Example 5 Example 6 Example 7 Example 8 Divide $2x^3 + 9x^2 + 25$ by $(x + 5)$ Divide $x^3 + x - 4$ by $(x - 2)$ Divide $x^3 - 1$ by $(x - 1)$ Divide $3x^4 - 2x^3 - 5x^2 - 4$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Example 7 given two factors -2 unknowns $+ FACTORISING$ It is given that $g(x) = 3x^4 + bx^3 + cx^2 - 7x - 4$ has factors $(x + 1)$ and $(x - 1)$. i. Find the value of b and the value of c . ii. Factorise $g(x)$ completely. i. $g(1) = 3(1)^4 + b(1)^3 + c(1)^2 - 7(1) - 4 = b + c - 8$ $b + c - 8 = 0$ $b + c = 8 \cdot 0$ $g(-1) = 3(-1)^4 + b(-1)^3 + c(-1)^2 - 7(-1) - 4$ Example 8: with unknowns Example 9: with unknowns When $f(x) = 2x^3 + ax^2 + bx - 6$ is divided by $(x - 2)$ the remainder is 2, and when divided $(x + 1)$, it is 5. Find the value of a and the value of a and the value of a and
Find the remainder when $x^3 + 6x^2 + 5x - 12$ is divided by i. $x - 2$ iii. Hence find all solutions to $\frac{\mathbf{quotient}}{\mathbf{dividend}}$ becomes $\frac{\mathbf{dividend}}{\mathbf{dividend}} = \frac{\mathbf{divisor}}{\mathbf{quotient}}$ becomes $\frac{\mathbf{dividend}}{\mathbf{divisor}} = \frac{\mathbf{cumple 10}}{\mathbf{cumple 10}}$ Example 10 $\frac{\mathbf{cumple 11}}{\mathbf{cumple 10}}$ $\frac{\mathbf{f}(x) = 4x^4 - 17x^2 + 4$. Divide $(2x + 1)$. Give your answer in the $(2x + 1)$ in the other 2 factors and hence factorise $(2x + 1)$ in the	orm ii.lt is quickest to divide by both factors straight away rather than each $\frac{3x^2 + 7x + 4}{x^2 - 1 3x^4 + 7x^3 + x^2 - 7x - 4}$ ii.lt is quickest to divide by both factors straight away rather than each $a + 2b = 3$ $a + 2b = 3$ Solve simultaneously
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{x^{4} - 3x^{2}}{7x^{3} + 4x^{2} - 7x}$ $\frac{7x^{3} - 7x}{4x^{2} + 0x - 4}$ $\frac{4x^{2} - 4}{0}$ $3x^{4} + 7x^{3} + x^{2} - 7x - 4 = (x + 1)(x - 1)(3x^{2} + 7x + 4)$ $= (x + 1)(x - 1)(3x + 4)(x + 1)$ $f(-2) = 4a - 2b - 22$ $4a - 2b - 22$ $2a - b = 11$ 2 $2a + b = -22$ $4a - 2b - 22$ $2a - b = 11$ 2 Solve simultaneously $a + 2b = 3$ $2a + b = -22$ $2a - b = 11$ $2a - b = -1$
Since $x + 3$ gives remainder 0	Example 10 Example 11 Example 12: Finding your own factor (factor not give When $3x^5 - ax + b$ is divided by $(x - 1)$ and same remainder when divided by $(x - 2)$ as when divided by $(x + 1)$. Find the value of a . When $3x^5 - ax + b$ is divided by $(x - 1)$ and $(x + 1)$, the remainder are equal. Given that a, b form $(x \pm p)(ax^2 + bx + c)$ $\in \mathbb{R}$, find i.The value of a .
Type 4: With Unknowns Example 12: Example 13: With unknowns Example 14: Very ha Given that $x + 2$ and $x^2 + 6x + 13$ are roots of $x^3 + ax^2 + bx + c$ find a,b, and c Divide x^2 by $kx - 1$ The polynomial $x^4 + 2x^3 + c$ where a and b are constant divisible by $x^2 - x + 1$. Find values of a and b and the ot factors Note: This is an example that shows how it is an advantage to use comparing coefficients when we have unknown corefficients We will multiply the factors, expand it, and then compare coefficients (this is better than dividing when there are unknown coefficients $ x^2 + 3x + 2 \\ x^2 - x + 1 x^4 + 2x^3 + 0x^2 + ax + b \\ x^4 - x^3 + x^2 \\ x^2 - x + 1 x^4 + 2x^3 + 0x^2 + ax + b \\ x^4 - x^3 + x^2 \\ x^2 - x + 1 x^4 + 2x^3 + 0x^2 + ax + b \\ x^4 - x^3 + x^2 \\ x^2 - x + 1 x^4 + 2x^3 + 0x^2 + ax + b \\ x^4 - x^3 + x^2 \\ x^2 - x + 1 x^4 + 2x^3 + 0x^2 + ax + b \\ x^4 - x^3 + x^2 \\ x^2 - x + 1 x^4 + 2x^3 + 0x^2 + ax + b \\ x^4 - x^3 + x^2 \\ x^4 - x^3 + x^2 \\ x^4 - x^3 + x^2 + ax \\ x^4 - x^3 + x^4 + ax \\ x^4 - x^4 + $	$f(2) = (2)^3 + 3(2)^2 + a(2) + b = 2a + b + 20$ $f(-1) = (-1)^3 + 3(-1)^2 + a(-1) + b = -a + b + 2$ $f(1) = 3(1)^5 - a(1) + b = -a + b + 3$ $f(-1) = 3(-1)^5 - a(-1) + b = a + b - 3$ $f(1) = f(-1)$ Same remainder $f(2) = f(-1)$ $-a + b + 3 = a + b - 3$ $2a = 6$ $a = 3$ ii. $2a + b + 20 = -a + b + 2$ $2a + b + 20 = -a + b + 2$ $x + 2 = 4x^2 + x - 5$ $x + 2 = 4x^3 + 8x^2$ $4x^3 + 8x^2$ you 0, So we need to check factors of 10 $f(\pm 1), f(\pm 2), f(\pm 5) \text{ and } f(\pm 10).$ Normally the first 4 are the max we need to c $f(-2) = 0$ $4x^2 + x - 5$ $x + 2 = 4x^3 + 8x^2$
$(x+2)(x^2+6x+13)=x^3+ax^2+bx+c$ $x^3+6x^2+13x+2x^2+12x+26=x^3+ax^2+bx+c$ $x^3+8x^2+25x+26=x^3+ax^2+bx+c$ Hence, we can compare coefficients : $a=8,b=25,c=26$ $(a-1)x+(b-2)=x^2+3x+2=(x+1)(x^2+3x+2)=x^2+3x+2=(x+1)(x+2)=x^2+3x+2=(x+1)(x+2)=x^2+3x+2=x^2+x^2+3x+2=x^2+x^2+x^2+x^2+x^2+x^2+x^2+x^2+x^2+x^2+$	Show that $x^2 - 4$ is a factor of $x^2 - 5x^2 + 2x^2 + 20x - 24$ Show that $x^2 - 2x + 1$ is a factor of $x^2 - 5x + 4x + 2x + 20x - 24$ Show that $x^2 - 2x + 1$ is a factor of $x^2 - 5x + 4x + 2x + 2x + 20x - 24$ i. Given that $(x - 5)$ is a factor of $P(x)$, find a relationship between a , b and c . ii. Given that $(x - 5)^2$ is a factor of $P(x)$, and the $a = 2$, find the values of b and c ii. $\frac{x^2 - 5x + 6}{4x^2 - 5x^2 + 2x^2 + 20x - 24}$ Since a repeated factor need to use polynomial division $\frac{x^2 - 5x + 6}{4x^2 - 5x^2 + 2x^2 + 20x - 24}$ i. $P(x) = 2x^4 - 15x^3 + 4x + 2x + 2x + 20x + 2x + 1$ is a factor of $P(x)$, find a relationship between a , b and c . ii. $P(x) = 2x^4 - 15x^3 + 4x^2 + 5x + 2x + 20x + 2x + 1$ ii. $P(x) = 2x^4 - 15x^3 + 4x + 2x + 2x + 20x + 2x + 1$ ii. $P(x) = 2x^4 - 15x^3 + 4x + 2x + 2x + 20x + 2x + 1$ ii. $P(x) = 2x^4 - 15x^3 + 4x + 2x + 2x + 20x + 2x + 1$ iii. $P(x) = 2x^4 - 15x^3 + 4x + 2x + 2x + 2x + 20x + 2x + 1$ iii. $P(x) = 2x + 1$ is a factor of $P(x)$, find a relationship between a , b and c . ii. $P(x) = 2x^4 - 15x^3 + 4x + 2x + 2x + 2x + 2x + 2x + 2x + 2x$
Getting Your Answer In Certain Forms : $\frac{a}{b}$ can produce 2 forms Form 1 $\frac{a}{b} = Q + \frac{R}{b}$ Form 2 $a = Qb + R$ $a = dividend$ $b = divisor$ $Q = quotient$ $R = remainder$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
We usually use form 1. Form 2 is just form 1 re-arranged to get rid of the fraction (multiplying all terms by b) $\frac{\mathbb{E} \times \text{ample 15}}{\frac{x^2 + 8x^2 - 9x + 12}{x + 6}} = Ax^2 + Bx + C + \frac{D}{x + 6} \\ \frac{3x^2 - 2x^2 - 4x + 8}{3x^2 - 2x - 7} = Ax + B + \frac{Cx + D}{3x^2 - 2x - 7}. \\ \text{Find the values of A, B, C and D} \\ \frac{x^2 + 2x - 21}{x + 6[8^2 + 8x^2 - 9x + 12]} \\ \frac{x^2 + 6x^2}{2x^2 + 9x} \\ \frac{2x^2 + 12x}{2 + 12x} \\ \frac{-21x + 12}{5x + 126} \\ \frac{5x + 126}{138} \\ \text{Quotient is } x^2 + 2x - 21 \\ \text{remainder is 138} \\ \frac{x^2 + 8x^2 - 9x + 12}{x + 6} \\ = x^2 + 2x - 21 + \frac{138}{x + 6} \\ \Rightarrow A = 1, B = 2, \\ C = -21, D = 138 \\ \text{We usually use form 1. Form 2 is just form 1 re-arranged to get rid of the fraction (multiplying all terms by b)} \\ \frac{\text{Example 15}}{\text{Example 16}} \\ \frac{\text{Example 17}}{3x^2 - 2x - 7} \\ \frac{3x^2 - 2x^2 - 2x^2}{4x + 4} \\ \frac{3x^2 - 2x^2 - 1}{3x^2 - 2x - 7} \\ \frac{3x^2 - 2x^2 - 2x^2}{48x + 8} \\ \frac{3x^2 - 2x - 7}{38x^2 - 2x - 7} \\ \frac{30x^2 - 2x^2 - 48x + 8}{3x^2 - 2x - 7} \\ \frac{30x^2 - 2x^2 - 48x + 8}{3x^2 - 2x - 7} \\ \frac{30x^2 - 2x^2 - 48x + 8}{3x^2 - 2x - 7} \\ \frac{3x^2 - 2x - 7}{38x^2 - 2x - 8} \\ \frac{3x^2 - 2x - 7}{3x^2 - 2x - 8} \\ \frac{3x^2 - 2x - 7}{3x^2 - 2x - 8} \\ \frac{3x^2 - 2x - 7}{3x^2 - 2x - 8} \\ \frac{3x^2 - 2x - 7}{3x^2 - 2x - 8} \\ \frac{3x^2 - 2x - 7}{3x^2 - 2x - 8} \\ \frac{3x^2 - 2x - 7}{3x^2 - 2x - 8} \\ \frac{3x^2 - 2x - 7}{3x^2 - 2x - 8} \\ 3$	$x^{2} - 4 = (x + 2)(x - 2)$ $f(x) = x^{4} - 5x^{3} + 2x^{2} + 20x - 24$ $f(-2) = (-2)^{4} - 5(2)^{3} + 2(-2)^{2} + 20(-2) - 24 = 0$ $f(2) = (2)^{4} - 5(2)^{3} + 2(2)^{2} + 20(2) - 24 = 0$ $f(2) = (2)^{4} - 5(2)^{3} + 2(2)^{2} + 20(2) - 24 = 0$ $f(3) = x^{4} + 4x^{3} + x^{2} - 10x^{3} - 104x^{2} - 10x^{2} + 25x^{2} + 25x^{2$